Return to the Manage Active Submissions page at http://spie.org/app/submissions/tasks.aspx and approve or disapprove this submission. Your manuscript will not be published without this approval. Please contact author_help@spie.org with any questions or concerns.

System Engineering at the MEGARA project

A. Pérez-Calpena, A.^a; M.L. García-Vargas^a; A. Gil de Paz^b; J. Gallego Maestro^b; E. Carrasco Licea^c; F. Sánchez Moreno^d; J. Iglesias-Páramo^e & MEGARA Team

^aFRACTAL SLNE (Madrid, Spain), ^bUniversidad Complutense de Madrid (Madrid, Spain), ^cINAOE (Puebla, México), ^dUniversidad Politécnica de Madrid (Madrid, Spain), ^eInstituto de Astrofísica de Andalucía IAA-CSIC (Granada, Spain)

ABSTRACT

MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is a facility instrument of the 10.4m GTC (La Palma, Spain) working at optical wavelengths that provides both Integral-Field Unit (IFU) and Multi- Object Spectrograph (MOS) capabilities at resolutions in the range R=6,000-20,000. The MEGARA focal plane subsystems are located at one of the GTC focal stations, while the MEGARA refractive VPH based spectrograph is located at one of the Nasmyth platforms. The fiber bundles conduct the light from the focal plane subsystems to the pseudo-slits at the entrance of the spectrograph.

The project is an initiative led by Universidad Complutense de Madrid (Spain) in collaboration with INAOE (Mexico), IAA-CSIC (Spain) and Universidad Politécnica de Madrid (Spain) and is developed under contract with GRANTECAN. The project is carried out by a multidisciplinary and geographically distributed team, which includes the in-kind contributions of the project partners and personnel from several private companies.

The MEGARA system-engineering plan has been tailored to the project and is being applied to ensure the technical control of the project in order to finally meet the science high-level requirements and GTC constrains.

Keywords: MEGARA, GTC, System engineering, requirements and specification, technical budgets, RAMS, Product Tree, Interfaces, verification, configuration control, non-conformities, anomalies.

1. INTRODUCTION

Systems engineering provides the methodology for developing a system in a structured and orderly manner. This methodology involves following several steps, which include specifying the system requirements, mapping them to the initial needs, and, finally, preparing and carrying out the system verification. The objective of this process is to produce a system that fulfills the initial needs, which is essential for reaching the project success.

A project success occurs when the system meets its objectives and the project is carried out within the cost and schedule assigned to it. In order to accomplish it, the project must be carried out with a good organization. The Systems Engineering Plan provides the means to organize the technical effort of the project.

System Engineering is defined as the interdisciplinary approach governing the total technical effort to transform the initial requirements into the system solution. A System Engineering Plan must describe the approach, techniques, tools, organization, planning and technical effort needed to achieve the project objectives. Systems Engineering considers the whole system life cycle. It means, it is considering from the earliest stages of the project not only to design phase of the system but also the production, integration and operation phases. In this way, the production, maintenance, operation and logistics requirement are taken into account from the beginning.

The System Engineering Plan must be tailored for that particular project. This Plan must include the activities to be performed in each phase of the project, the milestones to be met, the documentation to be generated and a schedule of technical reviews to assess the progress achieved in each project milestone.

Therefore, Systems Engineering helps to ensure that the system is correctly developed from the beginning, minimizing risks and anticipating problems that may arise.

9150 - 81 V. 2 (p.1 of 13) / Color: No / Format: A4 / Date: 5/23/2014 7:32:22 AM

Return to the Manage Active Submissions page at http://spie.org/app/submissions/tasks.aspx and approve or disapprove this submission. Your manuscript will not be published without this approval. Please contact author_help@spie.org with any questions or concerns.

The main tasks that should be carried out by the System Engineer are summarized as follows:

- Implement the requirements engineering, which aims to ensure that the high-level requirements are correctly
 interpreting user needs and including all environmental and external interface constrains and ensure traceability
 with the lower level specifications.
- Perform system analysis, resolve requirement conflicts, carry out trade-off, develop and use simulation models, analyze project risks and perform RAMS analysis.
- Define and maintain system configuration (define Product Tree and Interface Table) and manage nonconformities and configuration changes that could arise during the system development.
- Prepare and execute the Integration and Verification Plan.
- Prepare the Operation and Maintenance Plan.

During the Conceptual Phase of the MEGARA project, the MEGARA System Engineering Plan was defined considering all project phases, from conceptual design to the final instrument acceptance at GTC. The activities are reviewed at the end of each phase in order to add the needed details to the tasks to be performed in the following phase. Currently, MEGARA has already delivered the CDR documentation and is ready to enter into manufacturing. This article summarizes how system engineering has been implemented at MEGARA and the current status of the activities.

2. MEGARA OVERVIEW

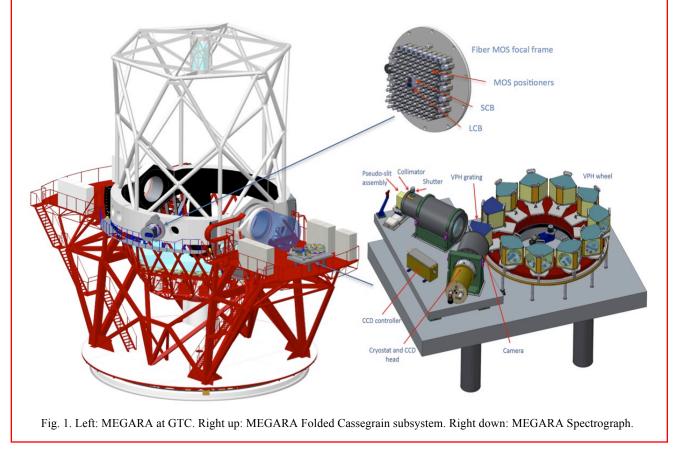
MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is an optical Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) designed for the GTC 10.4m telescope in La Palma.

MEGARA offers two IFU-type modes with two different bundles, one covering 12.5 arcsec x 11.3 arcsec with a spaxel size of 0.62 arcsec (Large Compact Bundle; LCB, which makes use of 100mm-core optical fibers) and another one covering 8.5 arcsec x 6.7 arcsec with a spaxel size of 0.42 arcsec (Small Compact Bundle; SCB, with 70mm-core fibers). The MEGARA MOS mode will allow observing up to 100 objects in a region of 3.5 arcmin x 3.5 arcmin around the two IFU bundles. Each of the MEGARA MOS positioners can place a mini-bundle of 7 fibers (0.62"/fiber) covering an area of 1.6" on the sky. Eight of these bundles will be devoted to the determination of the sky during the observation with the LCB IFU, so only 92 of these positioners will be available for MOS observations.

Param	ieter	LCB	SCB	MOS
Spaxel size		0.62 arcsec	0.42 arcsec	0.62 arcsec
Field of View		$12.5 \text{ x } 11.3 \text{ arcsec}^2$	$8.5 \times 6.7 \operatorname{arcsec}^2$	3.5 x 3.5 arcmin ²
$\Delta\lambda$ (EED ₈₀)	Requirement	4 pix	3.48 pix	4 pix
$\Delta\lambda$ (FWHM)	Requirement	3.6 pix	3.14 pix	3.6 pix
	LR VPHs	6,000	7,000	6,000
$(R_{FWHM}=\lambda/\Delta\lambda)$	MR VPHs	12,000	13,500	12,000
(Requirement)	HR VPHs	18,700	21,500	18,700

Table 1. Main characteristics of the MEGARA LCB and SCB IFU and MOS modes.

In MEGARA Spectrograph the optical elements are placed on an optical table. The fiber bundle(s) reach the spectrograph on the pseudo-slit, where the fibers are aligned. There are 3 pseudo slits, which can be selected to the observing position with a dedicated mechanism. The focusing mechanism is also implemented moving the pseudo slits in the optical path axis direction. Just after the pseudo slit, follows the collimator barrel that includes the rotating custom-made shutter. Then, follows the pupil position, where the VPHs shall be located (a mechanism is used to select among the 11 VPHs set on the wheel). Finally, follows the camera and the cryostat, where is hosted the CCD.


The set of VPHs that MEGARA will provide is included in Table 2.

9150 - 81 V. 2 (p.2 of 13) / Color: No / Format: A4 / Date: 5/23/2014 7:32:22 AM

Return to the Manage Active Submissions page at http://spie.org/app/submissions/tasks.aspx and approve or disapprove this submission. Your manuscript will not be published without this approval. Please contact author_help@spie.org with any questions or concerns.

		1	1		1		
VPH Name	Setup	R _{FWHM}	$\lambda_1 - \lambda_2 (\text{Å})$	λc (Å)	$\Delta\lambda$ (@ λc) (Å)	$\Delta v (km/s)$	lin res (Å/pix)
VPH405-LR	LR-U	6028	3653 - 4386	4051	0.672	50	0.17
VPH480-LR	LR-B	6059	4332 - 5196	4800	0.792	49	0.20
VPH570-LR	LR-V	6080	5143 - 6164	5695	0.937	49	0.23
VPH675-LR	LR-R	6099	6094 - 7300	6747	1.106	49	0.28
VPH799-LR	LR-I	6110	7220 - 8646	7991	1.308	49	0.33
VPH890-LR	LR-Z	6117	8043 - 9630	8900	1.455	49	0.36
VPH410-MR	MR-U	12602	3917 - 4277	4104	0.326	24	0.08
VPH443-MR	MR-UB	12370	4225 - 4621	4431	0.358	24	0.09
VPH481-MR	MR-B	12178	4586 - 5024	4814	0.395	25	0.10
VPH521-MR	MR-G	12035	4963 - 5443	5213	0.433	25	0.11
VPH567-MR	MR-V	11916	5393 - 5919	5667	0.476	25	0.11
VPH617-MR	MR-VR	11825	5869 - 6447	6170	0.522	25	0.13
VPH656-MR	MR-R	11768	6241 - 6859	6563	0.558	25	0.14
VPH712-MR	MR-RI	11707	6764 - 7437	7115	0.608	26	0.15
VPH777-MR	MR-I	11654	7382 - 8120	7767	0.666	26	0.17
VPH926-MR	MR-Z	11638	8800 - 9686	9262	0.796	26	0.20
VPH665-HR	HR-R	18700	6445 - 6837	6646	0.355	16	0.09
VPH863-HR	HR-I	18701	8372 - 8882	8634	0.462	16	0.12

Table 2. MEGARA VPHs.

9150 - 81 V. 2 (p.3 of 13) / Color: No / Format: A4 / Date: 5/23/2014 7:32:22 AM

Return to the Manage Active Submissions page at http://spie.org/app/submissions/tasks.aspx and approve or disapprove this submission. Your manuscript will not be published without this approval. Please contact author_help@spie.org with any questions or concerns.

The consortium responsible for the design and construction of the instrument includes the Universidad Complutense de Madrid (UCM, Spain) where the MEGARA Principal Investigator (Armando Gil de Paz) is located, the Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE, México), the Instituto de Astrofísica de Andalucía (IAA-CSIC, Spain), and the Universidad Politécnica de Madrid (UPM, Spain). MEGARA is being developed under contract with GRANTECAN.

3. SYSTEM ENGINEERING TASKS

3.1 Requirements engineering

Requirements engineering is the System Engineering activity devoted to develop the system requirements. This activity starts identifying the high-level requirements to iteratively generate lower level requirements during the design and decomposition of the system.

In order to define the complete set of MEGARA high-level system requirements, the top-level science performance requirements has been collected as well as the environmental, production, operation, maintenance and handling constrains that could apply to the instrument and the GTC interfaces (focal stations constrains, services to the instruments, standards to be applied, etc.) applicable to MEGARA.

During the conceptual design, two documents were generated to gather this information:

- MEGARA Functional Requirement document, where the high-level scientific requirements (taking into account both the GTC and the MEGARA scientific group high-level needs) are defined.
- MEGARA Interface to GTC Requirement document, where all GTC interfaces, environmental, operation, maintenance and handling constrain are defined.

During the preliminary and detailed design, the MEGARA System Specification document was produced to specify the solution adopted for the MEGARA instrument. This document contains the lower level specifications of the MEGARA subsystem and components. The specified solution fulfills the requirements stated in the MEGARA Functional Requirement and MEGARA Interfaces to GTC documents; traceability to both documents was implemented.

In addition, the interface control documents between the MEGARA subsystems that are developed by different groups have been defined. All requirements, specification and interface documents are now under configuration control.

Following the best engineering practices, the requirements included in the documents mentioned in the previous paragraphs have been developed fulfilling the conditions identified in the following lines:

- The requirements must be identifiable (a unique code will be assigned).
- The source of the requirement must be identified (source or parent requirement).
- Each requirement must be unique (in order to facilitate the traceability of the requirement).
- The requirement must be concise and unambiguous.
- The technical requirements of the proposed solutions (i.e., specifications) must be verifiable.

Requirements are stored and managed by the FRACTAL Configuration Management Tool (GECO), which facilitates the traceability and control of the requirements. GECO enables to establish relationships between parent and children requirements and helps the System Engineering to analyze the impact of the Configuration Changes and Non-conformities that could be raised during system development. GECO allows automatically generating requirement documents and specifications from the requirements kept in the application.

9150 - 81 V. 2 (p.4 of 13) / Color: No / Format: A4 / Date: 5/23/2014 7:32:22 AM

Return to the Manage Active Submissions page at http://spie.org/app/submissions/tasks.aspx and approve or disapprove this submission. Your manuscript will not be published without this approval. Please contact author_help@spie.org with any questions or concerns.

IN	-	Cod	e 🔺	Name		Document	Refe	r			
IN-MG		FR/IN-MG/010		High Resolution (HR) mode	RO/	N-MG/001	CD				
- TIN-MG-CS		FR/IN-MG/011		Fiber-fed spectrograph		N-MG/001	CD	-			
- TIN-MG-CT		FR/IN-MG/012		MEGARA focal plane configu	. RQ/	N-MG/001	CD				
- TIN-MG-FB		FR/IN-MG/013		LCB Fiber-sampling on sky	RQ/	N-MG/001	CD				
IN-MG-FB-100		FR/IN-MG/014		LCB fiber core	RQ/	N-MG/001	CD				
		FR/IN-MG/015		MOS Fiber-sampling on sky		N-MG/001	CD				
— 🗋 IN-MG-FB-101		FR/IN-MG/016		MOS fiber core		N-MG/001	CD				
- 🗋 IN-MG-FB-102		FR/IN-MG/017		SCB Fiber-sampling on sky	RQ/	N-MG/001	CD				
- 🗋 IN-MG-FB-200		FR/IN-MG/018	000			Requirer	ment Form				
- N-MG-FB-201		FR/IN-MG/019									
- NIN-MG-FB-202	_	FR/IN-MG/020	Code	FR/IN-MG/015		Title*	MOS Fibe	er-sampli	ng on sky		
		FR/IN-MG/021	couc	11()11(11(G)(01))		intic	111051100	.i sumpn	ig on sky		
— 🗋 IN-MG-FB-300		FR/IN-MG/022 FR/IN-MG/023	Document*	RQ/IN-MG/001	-	Source	MEGARA	Science T	eam, R.2		
- 🗋 IN-MG-FB-301		FR/IN-MG/023									
- N-MG-FB-302		FR/IN-MG/024	Ref. Line	CD Valid*	V	Section*	High-le	vel Scient	ific requirement	ts	-
- TIN-MG-FM		FR/IN-MG/025	Req. type*	Functional Requirements	-						
← ☐ IN-MG-FO		FR/IN-MG/027	keq. type	Functional Requirements							
- NIN-MG-FO-000		FR/IN-MG/028									
- NIN-MG-FO-001		FR/IN-MG/029	Requirement	Text	Par	ent Requirer	nents		Requireme	nt images	
		FR/IN-MG/030	The sampling	on sky shall be 0.62 arcsec	#	Parar	nt Requirem	ant	#	Images	_
— 🗋 IN-MG-FO-002		FR/IN-MG/031		the MOS mode.	1	FR/IN-MG/		lent	**	images	
- 🗋 IN-MG-FO-003		FR/IN-MG/032				FR/IN-MG/					
- 🗋 IN-MG-FO-100		FR/IN-MG/033			3	FR/IN-MG/					
- N-MG-FO-200		FR/IN-MG/034			>>						
- NIN-MG-FO-300		FR/IN-MG/035									
		FR/IN-MG/036									
	-	•									
N-MG-FO-900											

Fig. 2. MEGARA requirements list and form view at GECO.

3.2 System technical budgets

Technical budgets must be defined and maintained for the main physical and functional parameters of the system. The control of the technical budgets is particularly important to facilitate system integration and to guarantee that the system reaches the required performances.

In order to develop them correctly, the following issues are being taken into account:

- Budgets and tolerances must be defined for each level of the system.
- The tolerances must be reduced during the system detailed design.
- A technical budget must be defined for each physical parameter of the system (i.e., mass, power consumption, thermal dissipation, etc.).
- The technical budgets must be verified.

In MEGARA, the following technical budgets are being produced and maintained:

- Image quality to determine the optical performance of the system.
- Spectral resolution and Spectral resolution repeatability to determine spectral resolutions deviations due to static contributors (such as misalignments and manufacturing errors of the subsystems) for the spectral resolution budget and to dynamic contributors (such as the spectrograph mechanism performance) for the spectral resolution repeatability.
- Image stability to determine the stability (in position) of the spectra projected on the detector during an observation.
- Spectral alignment and Spectral alignment repeatability to determine the displacement of the estimated position of the spectra at the detector for all resolution modes (LR, MR and HR, respectively) due to static contributors

9150 - 81 V. 2 (p.5 of 13) / Color: No / Format: A4 / Date: 5/23/2014 7:32:22 AM

Return to the Manage Active Submissions page at http://spie.org/app/submissions/tasks.aspx and approve or disapprove this submission. Your manuscript will not be published without this approval. Please contact author_help@spie.org with any questions or concerns.

(such as misalignments and manufacturing tolerances of the subsystems) and to dynamic contributors (such as the performance of the spectrograph mechanisms that could affect to the project spectra position).

- Throughput to determine the overall losses in the instrument since the light is received in the field lens until it reaches the detector.
- Flux homogeneity to determine the differences in flux between fibers (due to manufacturing and misalignments errors) in order to ensure a proper relative-flux calibration and cosmetics.
- Mass to identify the masses of all MEGARA components.
- Power consumption to identify the power consumption of the applicable components.
- Glycol water consumption to identify the glycol water consumption of the applicable components
- Thermal dissipation to identify the thermal dissipation of the active components.
- Reliability to identify the mean time between failures (MTBF) and mean time to repair (MTTR) of the applicable components.

ITEM	I	R	N	IR	F	IR				
	Spatial y-axis	Spectral x-axis	Spatial y-axis	Spectral x-axis	Spatial y-axis	Spectral x-axis	ІТЕМ	LCB mode	MOS mode	SCB mode
Pseudo slit alignment errors	± 3.3	± 10	± 3.3	± 10	± 3.3	± 10	Microholes position	$\pm 5~\mu m$	±5 µm	$\pm 5 \ \mu m$
Collimator and camera optical							Microholes diameter (fiber centering)	$\pm 3.5 \ \mu m$	±3.5 µm	$\pm 3.5 \ \mu m$
axis error	± 17	± 17	± 17	± 17	± 17	± 17	Microlens position	±5 µm	±5 µm	$\pm 5~\mu m$
Camera-Coll. angle	-	± 22		± 21		± 20	Microlens diameter	±2 μm	±2 µm	±2 μm
VPH lines per mm tolerance	-	± 60	~	± 60	-	± 74	Microlens – fiber assembling and gluing	±5 μm	±5 μm	±5 μm
Grating optics manufacturing and assembly tolerance	-	± 10	-	± 20		± 20	Support frame assembling errors (static)	-	±1 μm	-
Grating alignment tolerance	± 1	± 4	± 1	± 3	± 1	± 2	MOS minibundles dynamic errors	171	±4.7 μm	-
Detector alignment tolerance	± 6.6	± 6.6	± 6.6	± 6.6	± 6.6	± 6.6	TOTAL	±9.55 μm	±10.69 μm	±9.55 μm
TOTAL (pixels)	±19	± 68	± 19	± 70	± 19	± 82	Requirement	±10 µm	±10 µm	±8 μm
Requirement (pixels)	±900	±100	±900	±100	±900	±100	1			

Fig. 3. Left: Spectral alignment error budget. Right: Flux homogeneity error budget.

3.3 System analysis

Different system analyses will be carried out during the complete system life cycle and at different level of decomposition of the system.

Functional analysis to study the functions that must be performed by a system and assign them to lower level and tradeoffs to evaluate several alternatives and select the best one (according to the evaluation established criteria) could be required at different phases of the project.

Project analysis to evaluate that the project is fulfilling cost, schedule and technical objectives and risk analysis to identify and assess risks that could affect to the project development must be performed regularly as part of the quality control activities of the project. For project management control, MEGARA is using the FRACTAL Project Management Tool (MANATEE). The outputs of these analyses are included at MANATEE and at the MEGARA Project Management Plan.

System performance analysis must be done to evaluate the system performance and to assess the manufacturing and integration tolerances assigned to the different components. As mention in section 3.2, image quality, spectral resolution and spectral resolution repeatability, flux homogeneity, image stability, spectral alignment and spectral alignment repeatability analysis and throughput analyses have been performed to produce the system technical budgets.

9150 - 81 V. 2 (p.6 of 13) / Color: No / Format: A4 / Date: 5/23/2014 7:32:22 AM

Return to the Manage Active Submissions page at http://spie.org/app/submissions/tasks.aspx and approve or disapprove this submission. Your manuscript will not be published without this approval. Please contact author_help@spie.org with any questions or concerns.

The Reliability, Availability, Maintainability and Safety (RAMS) analyses have been also performed to ensure that MEGARA design meets the availability, reliability, maintainability and safety requirements imposed to the system.

- Maintainability Analysis analyzes how to maintain the system and to minimize and facilitate its maintenance during the operation phase.
- Handling and Transport Analysis ensures that the handling and transport constrains (as stated by GRANTECAN) are compiled and establishes the corresponding requirements in the MEGARA Interface to GTC document.
- Failure Analysis (FMECA) identifies and evaluates the potential failure modes of the system, subsystems and components.
- Reliability Analysis estimates the percentage of time that the system could be unavailable taken into account the failure modes identified at the FMECA.
- Spare analysis provides a recommended spare parts list taken into account the outputs from the FMECA's and reliability analyses.
- Safety Analysis identifies and assesses the hazards that could happen to the persons that are involved in the use and maintenance of the system.

Other important point to be mention is the use of simulation models, which provide support not only during the design phase but also during the verification of the system. These models are mainly used to facilitate trade-offs (e.g., to evaluate solution performances or the feasibility of the proposed solutions) and in the maintainability analysis (e.g., study access to the different components, analyze envelopes, etc.).

The following simulation models have been generated and being used at MEGARA:

- Optical Model (Zemax)
- Mechanical and thermal model (Ansys)
- 3D dimensional model (Pro-Engineer)
- Control System Simulator.

Additionally, a Fiber MOS positioner prototype to demonstrate manufacturability and a fiber minibundle prototype to perform preliminary measurement of the fibers transmission and FRD have been produced.

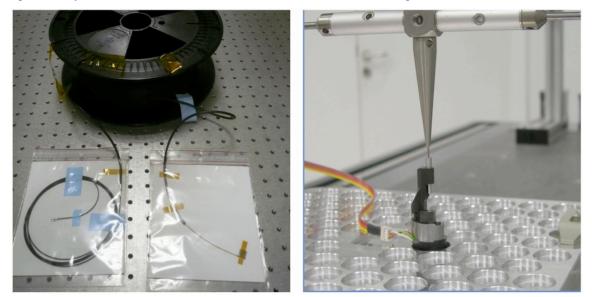


Fig. 4. Left: MEGARA fiber minibundle prototype. Right: Fiber MOS positioner at the measuring device.

9150 - 81 V. 2 (p.7 of 13) / Color: No / Format: A4 / Date: 5/23/2014 7:32:22 AM

Return to the Manage Active Submissions page at http://spie.org/app/submissions/tasks.aspx and approve or disapprove this submission. Your manuscript will not be published without this approval. Please contact author_help@spie.org with any questions or concerns.

3.4 Product tree

The Product Tree is the hierarchical breakdown of a system into low-level elements that fully define the system. The goal is to reach a level of division into discrete elements that can be produced independently. The Product Tree is produced as result of the design process.

Each element of the Product Tree must have a unique code. At MEGARA, this code is used for coding other elements such as drawings, requirements, interfaces, etc. The Product Tree code has been defined using the GTC configuration codification rules to facilitate later the integration of the instrument in the GTC system.

The Product Tree elements are registered in GECO, from where they can be exported to an excel sheet.

Fig. 5. MEGARA Product Tree elements at the first level.

Code	Name	Description
IN-MG-S1-500	Camera	The Camera includes the Optical and Opto-mechanical components to conduct the light from the pupil position to the Detector.
IN-MG-S1-510	Camera Optics	The Camera Optics include the Camera Optical components.
IN-MG-S1-511	CAM-D1 lens	CAM-D1/CAM-D2 doublet
IN-MG-S1-512	CAM-D2 lens	CAM-D1/CAM-D2 doublet
IN-MG-S1-513	CAM-D3 lens	CAM-D3/CAM-D4 doublet
IN-MG-S1-514	CAM-D4 lens	CAM-D3/CAM-D4 doublet
IN-MG-S1-515	CAM-S5 lens	
IN-MG-S1-516	CAM-S6 lens	
IN-MG-S1-517	CAM-S7 lens	
IN-MG-S1-520	Camera Barrel	The Camera Barrel refers to the barrel that supports the Camera Optics elements
IN-MG-S1-521	Camera Outer Barrel Subassembly	
IN-MG-S1-521-001	Camera outer barrel	
IN-MG-S1-521-002	Camera titanium flexure	2 x
IN-MG-S1-521-003	M6x14 Stainless Steel cap screw	16 x M6x14 Stainless Steel cap screw - McMaster (92290A320)
IN-MG-S1-521-004	M4x16 Stainless Steel cap screw	32 x M4x16 Stainless Steel cap screw - McMaster (92290A154)
IN-MG-S1-521-005	M4x0.7 Stainless Steel Hex Locknut	32 x M4x0.7 Stainless Steel Hex Locknut - McMaster (94205A230)
IN-MG-S1-521-006	M4x8 Stainless Steel cap screw	32 x M4x8 Stainless Steel cap screw - McMaster (92290A140)
IN-MG-S1-521-007	M5x25 Stainless Steel cap screw	16 x M5x25 Stainless Steel cap screw - McMaster (92290A252)
IN-MG-S1-521-008	Camera outer barrel final ring	
IN-MG-S1-521-009	M5x14 Stainless Steel cap screw	16 x M5x14 Stainless Steel cap screw - McMaster (92290A230)
IN-MG-S1-521-010	Camera outer barrel initial ring	
IN-MG-S1-522	Camera Inner Barrel Subassembly	
IN-MG-S1-522-001	Camera inner barrel ring	
IN-MG-S1-522-002	Camera inner barrel	
IN-MG-S1-522-003	Camera inner barrel flange	
IN-MG-S1-522-004	M4x16 Stainless Steel cap screw	32 x M4x16 Stainless Steel cap screw - McMaster (92290A154)
IN-MG-S1-522-005	M3x6 Stainless Steel cap screw	12 x M3x6 Stainless Steel cap screw - McMaster (92290A111)

Fig. 6. MEGARA Product Tree elements detailed list partial view.

9150 - 81 V. 2 (p.8 of 13) / Color: No / Format: A4 / Date: 5/23/2014 7:32:22 AM

Return to the Manage Active Submissions page at http://spie.org/app/submissions/tasks.aspx and approve or disapprove this submission. Your manuscript will not be published without this approval. Please contact author_help@spie.org with any questions or concerns.

3.5 Interfaces

An interface is defined as the boundary between two subsystems or components (hardware or software) that are responsibility of two different groups of engineers (or contractors) that work separately.

The system interfaces may be external (with other adjoining systems) or internal (between subsystems). As mentioned in section 3.1, the MEGARA external interfaces (with GTC) are included in the MEGARA Interface to GTC Requirement document.

The internal interfaces must be identified and defined during the design process. The definition of the interfaces includes establishing and maintaining the interface table, defining the interface requirements (i.e., elaborating requirements documents for each identified interface) and maintaining interface control (as part of the configuration control).

The interfaces must be defined between physical components with the aim to minimize the amount of data that must be exchanged between components. This is particularly important from two points of view: to avoid complicating the communication between working groups and to facilitate system integration.

Code	Element1	Element2	Name	Description
IN-MG-S1-000/IN-MG-S1-400	IN-MG-S1-000	IN-MG-S1-400	Optical bench - Spectral Subsystem	INT/IN-MG-S1-000/IN-MG-S1-470/001 Support Structure - Spectral subsystem mechanism DR/IN-MG-S1/002 MEGARA Main subsystems positions at the optical bench DR/IN-MG-S1-400/001 MEGARA Spectral subsystem DR/IN-MG-S1/006 MEGARA Optical bench – Wheel interface DR/IN-MG-S1479/000 MEGARA Insertion mechanism DR/IN-MG-S11/007 MEGARA Optical bench – Insertion mechanism interface
IN-MG-S1-000/IN-MG-S1-700	IN-MG-S1-000	IN-MG-S1-700	Optical bench - CCD Controller	INT/IN-MG-S1-000/IN-MG-S1-700/001 Support Structure - CCD Controller DR/IN-MG-S1/002 MEGARA Main subsystems positions at the optical bench DR/IN-MG-S1-700/000 MEGARA CCD Controller DR/IN-MG-S1/010 MEGARA Optical bench – CCD Controller interface
IN-MG-S1-040/IN-MG-S1-500	IN-MG-S1-040	IN-MG-S1-500	Camera-Cryostat Support Structure - Camera	INT/IN-MG-S1-040/IN-MG-S1-500/001 Camera-Cryostat Support Structure - Camera DR/IN-MG-S1-520/000 MEGARA Camera subassembly DR/IN-MG-S1-040/000 MEGARA Camera-Cryostat Support Structure DR/IN-MG-S1/008 MEGARA Camera-Cryostat Support Structure, Camera and Cryostat interface
IN-MG-S1-200/IN-MG-S1-300	IN-MG-S1-200	IN-MG-S1-300	Shutter - Collimator	INT/IN-MG-S1-200/IN-MG-S1-300/001 Shutter - Collimator DR/IN-MG-S1-210/000 MEGARA Shutter mechanism assembly DR/IN-MG-S1/004 MEGARA Shutter - Collimator interface
IN-MG-S1-400/IN-MG-S1-400	IN-MG-S1-400	IN-MG-S1-400	VPH Optics - VPH Opto-mechanics	INT/IN-MG-S1-400/IN-MG-S1-400/001 VPH Optics - VPH Optomechanics DR/IN-MG-S1-412/000 LR Opto-mechanics DR/IN-MG-S1-432/000 MR Opto-mechanics DR/IN-MG-S1-466/000 HR Opto-mechanics

Fig. 7. MEGARA Interface table partial view.

3.6 System verification

The system verification must include all activities that will be performed to ensure that the final system meets the initial high-level requirements.

MEGARA System and subsystems acceptance will be carried out at different levels. The subsystems will be firstly accepted at factory and, then, at the MEGARA integration laboratory (LICA, Laboratorio de Instrumentatión Avanzada), which is located at the Universidad Complutense de Madrid (UCM). The whole system will be also firstly integrated and accepted at LICA and, finally, at GTC.

9150 - 81 V. 2 (p.9 of 13) / Color: No / Format: A4 / Date: 5/23/2014 7:32:22 AM

Return to the Manage Active Submissions page at http://spie.org/app/submissions/tasks.aspx and approve or disapprove this submission. Your manuscript will not be published without this approval. Please contact author_help@spie.org with any questions or concerns.

3.6.1 Verification matrices

In order to accept the system, subsystems and components, the verification matrix of each element must be prepared including all element requirements and identifying the corresponding acceptance activities.

GECO facilitates the generation of the verification matrices by exporting the requirements of the selected elements to the matrix and also allows exporting the matrices to an excel table to be attached to the corresponding verification documents.

At the verification matrix, the following issues will be defined for each requirement:

- The verification method: testing, analysis, design review or inspection for each verification milestone.
- The verification procedure to be followed for verifying the requirement.
- The verification result to state the compliance or non-compliance of the requirement (in the later case, a non-conformity will be raised and identified at the matrix).
- The verification report, if needed, to add additional details about the verification results.

The full MEGARA verification matrix shall include all high-level system requirements, subsystems and low-level elements requirements and also interface requirements.

000		Project configuration:	Verification Matrix View				
<u>File Views Forms Tools Hel</u>	р						
T PT	-	Code	Name	Test Procedure	Test		
Ŷ- □ IN			Fiber MOS positioner control				
Ŷ─ 🗂 IN−MG	=	TR/IN-MG-FM-100/002	Positioner electronics master				
← ☐ IN-MG-CS		TR/IN-MG-FM-100/003	Positioner electronics comm				
- IN-MG-CT		TR/IN-MG-FM-100/004	Positioner voltage				
		TR/IN-MG-FM-100/005	Positioner maximum consum				
- IN-MG-FB		TR/IN-MG-FM-100/006	Positioner electronics low dis				
- CIIIIN-MG-FM		TR/IN-MG-FM-300/001	Fiber MOS positioner low lev				
- 🔄 IN-MG-FO		TR/IN-MG-FM/001	Fiber MOS functionality				
🗠 🚍 IN-MG-RA		TR/IN-MG-FM/002	Number of positioners				
P		TR/IN-MG-FM/003	Positioner patrol area				
- N-MG-S1-000		TR/IN-MG-FM/004	Distance between adjacent				
- NIN-MG-51-010		TR/ OO	V	erification Matrix Form	1		
- NIN-MG-S1-011		TR/					
- N-MG-S1-012		TR/ TR/ Code	TR/IN-MG-FM/003	Title	Positioner p	atrol area	
— 🗋 IN-MG-S1-013		TR/ TR/ Responsible	Arrillaga , Xabier 🛛 🔻	Verification method	Test (see T	EC/MEG/077)	
- N-MG-S1-020		TR/ Doer	Arrillaga , Xabier 🗸 🔻				
- D IN-MG-S1-040		TR/					
- N-MG-S1-050 - N-MG-S1-060		TR/ Planned Date	01-10-2014	Verification result			
N-MG-S1-080		TR/ Exec. Date	00-00-0000				
- 🗋 IN-MG-S1-100		TR/ TR/ Test procedure	•	Verific. milestones	Subsystem	acceptance	
— 🗋 IN-MG-S1-110		TR/ Test report	-				
— 🗋 IN-MG-S1-111		TR/ TR/ Non-conform.	-	Comments			
- 🗋 IN-MG-S1-112	-	1		comments			
		Conform					
		(1 from 1 🔌 🔅	8			×
		Fig. 8. GECO	Verification matrix requ	irements list and f	orm.		

3.6.2 Assembly, Integration and Verification (AIV) Plan

The MEGARA AIV Plan will include the scheduling of all activities to integrate the system and verify that it fulfills the initial requirements.

During the detailed design a preliminary version of the following documents have been already produced to identify the activities that shall be performed to assembly, integrate and verify each main subsystem:

9150 - 81 V. 2 (p.10 of 13) / Color: No / Format: A4 / Date: 5/23/2014 7:32:22 AM

Return to the Manage Active Submissions page at http://spie.org/app/submissions/tasks.aspx and approve or disapprove this submission. Your manuscript will not be published without this approval. Please contact author_help@spie.org with any questions or concerns.

- MEGARA. Fiber MOS acceptance tests and integration plan at AVS
- MEGARA Optical Fibers: Fibers and microlenses characterization, assembly and tests
- MEGARA Optics: Testing Plan at INAOE and CIO
- MEGARA Optics: Manufacturing Plan at INAOE and CIO
- MEGARA Cryostat Integration Plan
- MEGARA Cryostat acceptance tests at INAOE
- MEGARA Cryostat acceptance tests at LICA
- MEGARA Detector characterization: Test bench and prototype system
- MEGARA Detector Integration and Assembly Test Plan
- MEGARA Detector Characterization Test Plan
- MEGARA Spectrograph Integration Plan
- MEGARA Spectrograph Mechanisms Acceptance Tests
- MEGARA Camera and Collimator Opto-mechanics Integration and Verification Plan
- MEGARA Spectrograph. Pupil elements tests at LICA
- MEGARA Spectrograph Integration at LICA and setup

Besides the preliminary versions of the following AIV system level documents have been also produced:

- MEGARA system verification at LICA, which includes the verification activities to demonstrate that MEGARA is fulfilling the high-level requirements before being shipped to GTC.
- MEGARA Integration and Verification Plan, which summarizes all the activities that shall be done at subsystem level to accept each subsystem (as identified in the document list above), to integrate the whole instrument and to verify it at LICA.
- MEGARA Instrument Integration on Site, which contains the Integration Plan of MEGARA at GTC.
- MEGARA Commissioning plan, which contains the MEGARA Commissioning plan at GTC.

The AIV procedures must include the detailed description of the activities to be done, identifying tools, manpower, conditions to be met, the execution environment and any other relevant information that must be needed to execute and plan the activity.

The integration and verification activities to be performed at GTC during the commissioning of the instrument will be further elaborated following the GRANTECAN directions and constrains (i.e., taken into account the time and resources allocated to the MEGARA commissioning).

The MEGARA AIV Plan will be included and controlled using MANATEE, as the rest of tasks of the MEGARA Project Management Plan.

3.7 Configuration, non-conformities and anomalies control

All configuration elements of the system must be under configuration control. The configuration elements include the Product Tree, interfaces, requirements, specifications documents and drawings. Any change request affecting these elements shall be treated as a configuration change.

In addition, during the execution of the integration and verification activities, non-expected behaviors may appear, which would be treated as anomalies (to describe bugs or problems) or non-conformities (to describe the non-compliance of a requirement).

9150 - 81 V. 2 (p.11 of 13) / Color: No / Format: A4 / Date: 5/23/2014 7:32:22 AM

Return to the Manage Active Submissions page at http://spie.org/app/submissions/tasks.aspx and approve or disapprove this submission. Your manuscript will not be published without this approval. Please contact author_help@spie.org with any questions or concerns.

Project procedures have been defined to establish how to manage configuration changes, non-conformities and anomalies at the MEGARA project.

MEGARA Systems Engineer will be responsible to implement and manage the configuration control and also will assume the Product Assurance role being responsible to analyze the anomalies and non-conformities that may occur during the integration and test phases.

All will be stored at GECO, which provides the capabilities to facilitate the analysis that must be done and to track them.

Initiator*	Carrasco , Esperanza Sánchez-Blanco Mancera	 ▼ ▼ 	Starting Date* Modific. Date	29-10-2013		Medium Closed
Assig. to	Sanchez-Blanco Mancera		Modific. Date	04-11-2013		Closed
Description					Affected	
according to The require included in	graph zemax model (included o the configuration accepted. ments TR/IN-MG-S1-300/01 MEGARA specification are moo the collimator and camara as	1 y TR/I dified to	IN-MG-S1-620/001 reference the lens	2d	# Affec 1 Carrasco ,Esperan 2 Garcia Vargas,Mar 3 Gil de Paz ,Arman 4 Maldonado Medina	za isa do
Comments					5 Pérez Calpena, Ana	
	been approved and the chang	ges have	e been implemented a	at the	6 Sánchez-Blanco Ma	ancera,Ernesto
CC-affecte	d Elements	CC-a	affected Interfaces		CC-affected Docum	ents
# 1 IN-MG	Configuration Element	#	Interface	25		uments
(🧳 1 from 1 🛟		> 0			
(9. GE	ECO Configura	tion chang	e form.	
 • • • 		9. GF	ECO Configura		e form.	
Code		9. GE		y Form	e form.	
	Fig.		Non-conformit	y Form		
Code	Fig. NC/MEG/001 ct* Spectrograph optic		Non-conformit	y Form ° Carrasco so Sánchez-	, Esperanza	to
Code Sub-subje	Fig. NC/MEG/001 et* Spectrograph optic te* 25-10-2013		Non-conformit Initiator Assign t	y Form ° Carrasco so Sánchez-	- Esperanza -Blanco Mancera, Ernes	to
Code Sub-subje Starting da	Fig. NC/MEG/001 ct* Spectrograph optic te* 25-10-2013 te 10-12-2013	S	Non-conformit Initiator Assign t	y Form ° Carrasco so Sánchez-	- Esperanza -Blanco Mancera, Ernes	to
Code Sub-subjet Starting da Modific. da Description A non-confi CAM-D2, th lower than 1 RoC = 231	Fig. NC/MEG/001 tt* Spectrograph optic te* 25-10-2013 te 10-12-2013 te inter polishing was required. .7 mm .1194mm (the requirement	s Comi The o this N – CAN mm–1 MF=0	Non-conformit Initiator Assign t Priority*	y Form Carrasco Sánchez- Hiah ope with 7 ns (nominal)	•, Esperanza -Blanco Mancera, Ernes I Status° Acce Affected	to pt cted anza arisa ando ina, Manuel
Code Sub-subject Starting da Modific. da Description A non-confi CAM-D2, th lower than RoC = 231 Width = 24 Was 25.0 ±	Fig. NC/MEG/001 tt* Spectrograph optic te* 25-10-2013 te 10-12-2013 te inter polishing was required. .7 mm .1194mm (the requirement	S Comi The c this N – CAN mm–0 MF=0 Leving	Non-conformit	y Form Carrasco Sánchez- Hiah ope with 7 ns (nominal)	- Esperanza -Blanco Mancera, Ernes Status® Acce Affected # Affe 1 Carrasco,Esper 2 Garcia Vargas,M 3 Gil de Paz,Arma 4 Maldonado Med	to pt • cted anza arisa ando ina,Manuel ina
Code Sub-subject Starting da Modific. da Description A non-confi CAM-02, th lower than RoC = 231 Width = 24 was 25.0 ±	Fig. NC/MEG/001 at* Spectrograph optic te* 25-10-2013 te 10-12-2013 b* ormity was identified at ie width after polishing was required. .7 mm .1194mm (the requirement 0.1 mm)	S Comi The c this N – CAN mm–0 MF=0 Leving	Non-conformit Initiator Assign t Priority* Ments Soptions proposed to ce (/C are the following: M D2 (25mm)-air 0.9 CAMD3(25mm) .0.1655 mm radio rn g the nominal configu	y Form Carrasco Sánchez- Hiah ope with 7 ns (nominal) ration and	Status [*] Acce Affected # Affe Carrasco Esperi 2 Garcia Vargas,M 3 Gil de Paz,Arm; 4 Maldonado Med 5 Pérez Calpena,A NC-affected Docume	to pt • cted anza arisa ando ina,Manuel ina

9150 - 81 V. 2 (p.12 of 13) / Color: No / Format: A4 / Date: 5/23/2014 7:32:22 AM

Return to the Manage Active Submissions page at http://spie.org/app/submissions/tasks.aspx and approve or disapprove this submission. Your manuscript will not be published without this approval. Please contact author_help@spie.org with any questions or concerns.

3.8 Operation and maintenance plan

MEGARA operation shall be part of the GTC operation plan. As a facility instrument MEGARA must define the observing modes that will offer, including science and calibration modes, and the recommended calibration plan to obtain the best scientific return of the observations to be performed. This information is already included at the MEGARA Observing Modes and MEGARA Calibration Plan documents.

The MEGARA Maintenance Plan must include all the activities that must be carried out in order to ensure that the instrument is maintained in good working conditions and is ready to be used during the night observations. The MEGARA Maintenance Plan will be generated during the following phases in agreement with the GTC Maintenance Plan and the maintenance policy stated by GRANTECAN.

4. CONCLUSIONS

This article describes the system engineering activities that are being performed at the MEGARA project in order to ensure that the instrument shall fulfill the scientific requirements and project constrains.

MEGARA is now entering at the manufacturing and AIV phases. The system design is fixed and under configuration control. From the system-engineering point of view, the next steps are to prepare the detailed versions of the verification matrices and AIV procedures at subsystem and system level while keeping the technical control of the project.

REFERENCES

- [1] Gil de Paz, A. et al. "MEGARA: a new generation optical spectrograph for GTC", Proc. SPIE 9147, (2014)
- ^[2] García-Vargas, M.L.et al. "Project Management for complex ground-based instruments: MEGARA plan", Proc. SPIE 9150, (2014)

9150 - 81 V. 2 (p.13 of 13) / Color: No / Format: A4 / Date: 5/23/2014 7:32:22 AM